手機(jī)短信以其短小、迅速、簡(jiǎn)便、價(jià)格低廉等優(yōu)點(diǎn)成為一種重要的通信和交流方式, 受到眾多人士的青睞。然而, 手機(jī)短信與郵件一樣存在著垃圾信息問題。
目前, 垃圾短信過濾主要有黑名單過濾、關(guān)鍵詞過濾和基于文本分類的內(nèi)容過濾等方式。黑名單過濾和關(guān)鍵詞過濾方式能快速過濾垃圾短信, 但這兩種過濾方式實(shí)質(zhì)是基于規(guī)則的過濾, 雖然在一定程度上阻擋了一些垃圾短信, 但規(guī)則的方法需要更多的用戶自定義設(shè)置,很容易被反過濾。基于文本分類的短信過濾采用常見的分類算法, 如樸素貝葉斯、SVM、神經(jīng)網(wǎng)絡(luò)等。黎路 等人將貝葉斯分類應(yīng)用到J2ME 模擬環(huán)境中成功地過濾了中獎(jiǎng)短信和祝福短信。浙江大學(xué)的金展、范晶等 將樸素貝葉斯和支持向量機(jī)結(jié)合, 解決了傳統(tǒng)垃圾短信過濾系統(tǒng)短信特征和內(nèi)容未能得到及時(shí)更新而導(dǎo)致過濾性能降低的問題。王忠軍將基于樸素貝葉斯短信過濾算法與基于最小風(fēng)險(xiǎn)貝葉斯算法進(jìn)行了實(shí)驗(yàn)分析和比較,結(jié)論是基于最小風(fēng)險(xiǎn)的短信過濾算法具有較好的性能。
然而, 短信過濾的準(zhǔn)確率依賴于其訓(xùn)練樣本的數(shù)量及質(zhì)量, 這些分類算法需要經(jīng)過訓(xùn)練學(xué)習(xí)建立分類器模型,因此在速度上不能很好地滿足短信過濾實(shí)時(shí)性的要求。
從現(xiàn)有技術(shù)上來說, 垃圾短信的過濾在準(zhǔn)確率和效率方面仍然不能滿足現(xiàn)實(shí)需要。
Winnow 算法是在1987 年由Nick LittleSTONe 提出并對(duì)可行性做了嚴(yán)格證明的線性分類算法。當(dāng)時(shí)的目標(biāo)是想找到一種時(shí)空復(fù)雜度僅僅與分類對(duì)象相關(guān)屬性相關(guān)的數(shù)量呈線性相關(guān)的算法。平衡Winnow 算法是對(duì)基本W(wǎng)innow 算法的一種改進(jìn), 該算法具有過濾速度快、性能好、支持反饋更新的優(yōu)點(diǎn), 在信息過濾領(lǐng)域有很好的應(yīng)用前景, 尤其適合于對(duì)實(shí)時(shí)性要求較高的短信過濾系統(tǒng)。
特征提取的方法目前也有很多, 常用的特征選取方法有: 文檔頻率DF(Document Frequency) 、信息增益IG(Information Gain) 、互信息MI(Mutual Information) 、χ2統(tǒng)計(jì)等。
將分詞后的詞作為候選特征, 然后使用特征提取算法從中提取出對(duì)分類最有用的一些特征, 去除對(duì)分類貢獻(xiàn)不大的候選特征, 以降低特征的維數(shù)。其中χ2的主要思想是認(rèn)為詞條與類別之間符合χ2分布。χ2 統(tǒng)計(jì)量的值越高, 特征項(xiàng)和類別之間的獨(dú)立性越小、相關(guān)性越強(qiáng), 即特征項(xiàng)對(duì)此類別的貢獻(xiàn)越大。χ2 是一個(gè)歸一化的值, 該方法比其他方法能減少50%左右的詞匯, 具有分類效果好的優(yōu)點(diǎn)。本文中采用χ2統(tǒng)計(jì)進(jìn)行特征提取。